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Goal

We are going to study the so called Real Business Cycle Model.

The model has been developed by Kydland and Prescott (1982).

For their work (among others), they have received the Nobel price.
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The idea

For a long time, economists have thought about business cycles as
inefficiencies.

Hayeck (1932): Booms fed by artificially too low interest rates lead to
a over-heating. A recession needs to “clean” the economy.

Keynes (1937): Recessions result from a short fall in aggregate
demand:

Shocks to spending.
Shocks to the money market.

The dominant framework of the 70’s was Phillips (1958): A negative
relation between economic activity and inflation. A theory grounded
in Keynesian economics with sticky prices can explain this.

The Phillips curve provides a strong justification to use fiscal and
monetary policy to smooth the business cycle.
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The idea II

Reduced-form relationships like the Phillips curve became key
ingredients of policy analysis.

This type of Macroeconomic analysis had its height in the 1970s
when the FED used extensively the so called MPS model to analyze
the effects of monetary policy.

The MPS model consists of 334 equations with 188 exogenous
variables!

To make this model manageable, it assumes adaptive expectations
(more on that below).

Felix Wellschmied (UC3M) RBC 4 / 93



The idea III

During the 70s, economists started to realize that the reduced-form
relationships such as the Philips-curve are not time-invariant.

This has lead to a shift away from estimating reduced-form aggregate
relationships and towards models of optimal behavior where agents
respond to policy changes.
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The idea IV

RBC has changed our understanding of the business cycle
fundamentally in two ways.

First, it is a general equilibrium model, where agents optimize.

Second, there are no spending shocks, sticky prices, or other market
imperfections.

Instead, households respond optimally to shocks in productivity.

These shocks (and, hence, the cycle) are a by-product of
technological advancement.

There is no reason for these advancements to be deterministic.
Hence, the economy fluctuates around a long-run trend.

As behavior is optimal, there is no role for the government to do
anything.
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Recessions associated with slow TFP growth
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Think about the Solow model

Suppose you have a one-time increase in TFP:

The steady state level of capital increases.

As output increases, sYt > δKt ⇒ ∆Kt > 0 and this continues until
the steady state is reached.

Similarly, Ct = (1− s)Yt increases.

As productivity increases, wages and the interest rate are higher than
in steady state.

In the new steady state, investment and prices are again constant.
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The RBC Model

The Simplest Version
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Plan

We are going to start with the simplest version of the model.

Households own the capital stock and possess the production
technology (no need for firms).

There is no labor supply decision.

As all decisions are made by one entity, this is the social planner
solution to the problem.
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Environment

There is a representative household who is infinitely lived and
discounts the flow utility (CRRA preferences):

U(Ct) =
C 1−γ
t

1− γ
. (1)

It supplies inelastically one unit of labor, Ht = 1.

It owns the capital stock, Kt , that depreciates at rate δ.

It possesses a production technology for an output good:
Yt = AtK

α
t H

1−α
t = AtK

α
t .
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Technology

At the heart of the RBC model lies a stochastic process for
technology.

We require a stationary environment. For simplicity, we assume
technology is stationary.

Under some assumptions, this is equivalent to a model with a
deterministic trend growth rate.

The cyclical component of technology follows:

lnAt+1 = (1− ρ)µ+ ρ lnAt + ϵt+1, ϵt ∼ N(0, σ2
ϵ ). (2)

ρ guides the speed of mean reversion.

µ simply shifts the level of technology and, thus, of output. As we do
not care about the unit of measurement, we normalize µ = 0 to
reduce notation.
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Expectations

Key to the model is that the future is uncertain:

Households cannot make deterministic plans but only plans
conditional on possible future outcomes.

In every period t, they form expectations about the future.

We denote these expectations by Et .

But how should these expectations be formed?

During the 60’s, the typical assumption has been that people use
adaptive expectations: EtAt = At−1.
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The rational expectation revolution

During the 70’s, economists have started to deviate from adaptive
expectations.

Adaptive expectations are inefficient and imply that households
repeatedly make the same mistake.

Instead, economists have moved to rational expectations.

The main driving force behind this revolution has been Lucas Jr
(1972).

Which is another Nobel price winning idea.
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The rational expectation revolution II

Rational expectations assume that agents make use of all available
information in an optimal way.

They take today’s state, At , as given and know the model including
the law of motion of technology.

Not only do they form expectations about tomorrow but about all
possible future periods.

This is complex! I need to know the probability distribution over all
possible states at each point (infinite) in the future.

Fortunately, dynamic programing simplifies this problem greatly!
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The household problem

In the initial period (t = 0), households make a conditional plan (on
possible productivity realizations) of consumption and capital choices from
today to infinity:

max
Ct ,Kt+1

E0

{ ∞∑
t=0

βt C
1−γ
t

1− γ

}
(3)

s.t.

Ct + Kt+1 = Yt + (1− δ)Kt (4)

Yt = AtK
α
t (5)

It = Kt+1 − (1− δ)Kt (6)

lnAt+1 = ρ lnAt + ϵt+1 (7)
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The maximization problem

Let λt be the Lagrange multiplier on the budget constraint. Hence, the
Lagrangian is:

Λt = E0

{ ∞∑
t=0

βt

[
C 1−γ
t

1− γ
− λt [Ct + Kt+1 − AtK

α
t − (1− δ)Kt ]

]}
, (8)

and optimal behavior is given by the first order conditions:

∂Λt

∂Ct
= 0 (9)

∂Λt

∂Kt+1
= 0. (10)
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Optimal behavior

C−γ
t = λt (11)

βtλt = Et

{
βt+1λt+1

(
αAt+1K

α−1
t+1 + (1− δ)

)}
(12)

C−γ
t = Et

{
βC−γ

t+1

(
αAt+1K

α−1
t+1 + (1− δ)

)}

(13)

(11): Marginal benefit of consumption = its marginal cost.

(12): Marginal cost of saving = its marginal benefit.

Marginal benefit = Constrained tomorrow gets relaxed by
MPKt+1 + (1− δ).

(13) is called the Euler equation.
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Optimality and expectations

C−γ
t = Et

{
βC−γ

t+1

(
αAt+1K

α−1
t+1 + (1− δ)

)}
(14)

Note, Kt+1 is chosen today and, hence, known today.

However, At+1 is unknown today.

Moreover, for different realizations of At+1, the household chooses
different Ct+1 which is, thus, unknown today.

Hence, the right hand side has the expectation operator from today.
Rational expectations imply that we compute the probability
distribution for each possible At+1.

Note, the optimality condition links only period t to t + 1. We do not
require expectations over At+n ∀n > 1 to solve this problem.
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Euler equation

Let us interpret the Euler equation:

C−γ
t = Et

{
βC−γ

t+1

(
αAt+1K

α−1
t+1 + (1− δ)

)}
(15)

At the optimum, the gain of consuming one more unit today (the marginal
utility of consumption) = the gain from one more expected unit of
consumption tomorrow (the expectation of marginal utility of consumption
tomorrow times the expected return on savings).
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Optimal behavior II

1 = Et

{βC−γ
t+1

C−γ
t

(
αAt+1K

α−1
t+1 + (1− δ)

)}
(16)

When Et

{
βC−γ

t+1

C−γ
t

}
< 1 the household expects consumption growth.

In that case, Et

{
αAt+1K

α−1
t+1

}
> δ.

A high expected marginal product of capital makes me reduce
consumption today relative to the future.

Hence, a positive technology shock increases investment today.
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Equilibrium

An equilibrium is a set of allocations (Ct and Kt+1) taking Kt , At , and the
stochastic process for At as given such that the budget constrained, (4),
and the optimality condition (13) hold.
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Solution to the model

The solution to the model is given by the following set of equations

1 = Et

{βC−γ
t+1

C−γ
t

(
αAt+1K

α−1
t+1 + (1− δ)

)}
(17)

Ct + Kt+1 = Yt + (1− δ)Kt (18)

Yt = AtK
α
t (19)

It = Kt+1 − (1− δ)Kt (20)

lnAt+1 = ρ lnAt + ϵt+1 (21)

Difficulty: the Euler equation is non-linear (more on this later).
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Deterministic steady state

We begin with studying the deterministic economy: ϵt = 0 and, hence,
At = 1. Let us postulate that a steady state exists with Ct = Ct+1 = C ss ,
and Kt = Kt+1 = K ss .

From the Euler equation:

K ss =

(
α

1
β − 1 + δ

) 1
1−α

. (22)

Hence, we have found a steady state. Once Kt = K ss , the Euler equation
dictates that Ct = Ct+1. Note, K

ss < KGold from the Solow model
because of time discounting.
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Deterministic steady state II

From the production function:

Y ss =

(
α

1
β − 1 + δ

) α
1−α

. (23)

From the budget constrained:

C ss =

(
α

1
β − 1 + δ

) α
1−α

− δ

(
α

1
β − 1 + δ

) 1
1−α

. (24)

From the definition of investment:

I ss = δ

(
α

1
β − 1 + δ

) 1
1−α

. (25)
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Linearization

To simplify our solution of non-linear equations, we are going to use a
linear approximation.

In specific, we will use first-order Taylor approximations around the
deterministic steady state: f (x) ≈ f (x ss) + f ′(x ss)(x − x ss).

That is, we use a purtubation around the steady-state.

As you know, the approximate is only good close to the point around
which we approximate.

We could use higher-order expansions to improve our approximation.
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Log-linearization

In general, we could take the system as it is given. However, writing the
system in logs proves to be particularly useful. The resulting solution has
the interpretation of a percentage point deviation from steady state.
Log-linearization follows two steps:

1 Write all variables in terms of log deviations from their deterministic
steady state: xt = f (ln xt − ln x ss) = f (x̂t).

2 Use a first-order Taylor approximation around the deterministic steady
state: f (x̂t) ≈ f (x̂ ss) + f ′(x̂ ss)(x̂t − x̂ ss).

We start with deriving four rules for log-lineraization that we will apply
afterwards.
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Log-linearization II

Using these definitions, we can write a variable xt as:

xt = x ss
xt
x ss

= x ss exp(ln xt − ln x ss) = x ss exp(x̂t). (26)

Taking the Taylor expansion gives us Ll Rule 1:

xt = x ss exp(x̂t) ≈ x ss exp(x̂ ss)+ x ss exp(x̂ ss)(x̂t − x̂ ss) = x ss(1+ x̂t) (27)

because ∂ exp(x̂)
∂x̂ = exp(x̂) and x̂ ss = 0.
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Log-linearization III

Using the same logic, we arrive at Ll Rule 2:

xtyt ≈ x ss(1 + x̂t)y
ss(1 + ŷt) ≈ x ssy ss(1 + x̂t + ŷt) (28)

because multiplying two small numbers is approximately zero: x̂t ŷt ≈ 0.
Moreover, we have for a constant a:

xat = (x ss)a exp(a ln xt − a ln x ss) = (x ss)a exp(ax̂t). (29)

And, hence, we arrive at Ll Rule 3.

xat ≈ (x ss)a exp(ax̂ ss)+(x ss)aa exp(ax̂ ss)(x̂t− x̂ ss) = (x ss)a(1+ax̂t). (30)

Finally, Ll Rule 4 says:

xat y
b
t ≈ (x ss)a(y ss)b(1 + ax̂t + bŷt). (31)
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Log-linearizing investment

Investment:

It = Kt+1 − (1− δ)Kt (32)

Using Ll Rule 1 yields:

I ss(1 + Ît) = K ss(1 + K̂t+1)− (1− δ)K ss(1 + K̂t) (33)

δÎt = K̂t+1 − (1− δ)K̂t . (34)
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Log-linearizing technological process

Technological progress:

lnAt+1 = ρ lnAt + ϵt+1. (35)

First, we slightly rewrite this equation:

At+1 = exp(ρ lnAt) exp(ϵt+1) (36)

At+1 = Aρ
t exp(ϵt+1). (37)

Define yt+1 = exp(ϵt+1), then applying Ll Rule 1 on the left side, and Ll
Rule 4 the right yields:

(1 + Ât+1) = 1 + ρÂt + ŷt+1 (38)

(1 + Ât+1) = 1 + ρÂt + ln exp(ϵt+1)− ln exp(0) (39)

Ât+1 = ρÂt + ϵt+1 (40)

because Ass = exp(ϵss) = 1.
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Log-linearizing Euler equation

C−γ
t = Et

{
βC−γ

t+1

(
αAt+1K

α−1
t+1 + (1− δ)

)}
(41)

Using again Ll Rule 1 and Ll Rule 4 yields:

(C ss)−γ(1− γĈt) =

Et

{
(C ss)−γβ(1− γĈt+1)

[
1− δ + α(K ss)α−1(1 + Ât+1 + (α− 1)K̂t+1)

]}
(42)

(1− γĈt) =

Et

{
(1− γĈt+1)

[
β − βδ + βα(K ss)α−1(1 + Ât+1 + (α− 1)K̂t+1)

]}
(43)
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Insights from the Euler equation

Now substituting for the steady state capital stock:

(1− γĈt) =

Et

{
(1− γĈt+1)

[
1 + (1− β(1− δ))(Ât+1 + (α− 1)K̂t+1)

]}
(44)

With Ĉt+1Ât+1 ≈ Ĉt+1K̂t+1 ≈ 0 and rearranging yields:

Et Ĉt+1 − Ĉt =
1

γ
(1− β(1− δ))[EtÂt+1 + (α− 1)K̂t+1]. (45)

A high capital stock tomorrow leads to low consumption growth.

A high capital stock implies capital is relatively unproductive.

There are little gains to further investment and, hence, consumption
is high today.
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Insights from the Euler equation II

Et Ĉt+1 − Ĉt =
1

γ
(1− β(1− δ))[EtÂt+1 + (α− 1)K̂t+1]. (46)

High expected productivity tomorrow leads to high consumption
growth.

A high productivity makes capital more productive.

There are high gains to further investment and, hence, consumption
is low today.

Felix Wellschmied (UC3M) RBC 34 / 93



Insights from the Euler equation III

Et Ĉt+1 − Ĉt =
1

γ
(1− β(1− δ))[EtÂt+1 + (α− 1)K̂t+1]. (47)

Strength depends on the elasticity of intertemporal substitution, 1
γ .

When households are highly willing to trade current for future
consumption, productivity shocks will lead to larger responses in
investment.

Note, with a CRRA utility function, there is a one-to-one link between
risk aversion and the EIS .
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Log-linearizing budget constraint

Budget constraint:

Ct + Kt+1 = Yt + (1− δ)Kt (48)

Using Ll Rule 1 gives us:

C ss(1 + Ĉt) + K ss(1 + K̂t+1) = Y ss(1 + Ŷt) + (1− δ)K ss(1 + K̂t) (49)

C ss

K ss
(1 + Ĉt) + (1 + K̂t+1) =

Y ss

K ss
(1 + Ŷt) + (1− δ)(1 + K̂t) (50)

Now multiply out the constants:

C ss

K ss
Ĉt +

Y ss

K ss
− δ + 1 + K̂t+1 =

Y ss

K ss
+

Y ss

K ss
Ŷt + (1− δ) + (1− δ)K̂t

(51)

C ss

K ss
Ĉt + K̂t+1 =

Y ss

K ss
Ŷt + (1− δ)K̂t (52)
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Log-linearizing production function

Production function:

Yt = AtK
α
t (53)

Using Ll Rule 1 and Ll Rule 4 yields:

Y ss(1 + Ŷt) = Ass(K ss)α(1 + Ât + αK̂t) (54)

Ŷt = Ât + αK̂t (55)

(56)

The equation highlights the key propagation mechanism of the RBC
model. Output moves one-to-one with productivity. Additionally, it
increases with the capital stock which itself is moving with productivity.
The strength of this propagation depends on α.
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Summarizing log-linearization

Et Ĉt+1 − Ĉt =
1

γ
(1− β(1− δ))[EtÂt+1 + (α− 1)K̂t+1] (57)

C ss

K ss
Ĉt + K̂t+1 =

Y ss

K ss
Ŷt + (1− δ)K̂t (58)

Ŷt = Ât + αK̂t (59)

δÎt = K̂t+1 − (1− δ)K̂t (60)

Ât+1 = ρÂt + ϵt+1 (61)

This is a system of five variables and five linear difference equations that
we can solve ( Solution ).

Note, with a first-order Taylor expansion, uncertainty does not affect
behavior, i.e., none of the variables depends on σϵ.
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Parametrization

We have seen that the model is qualitatively consistent with some
basic business cycle factors.

To understand whether it is also quantitatively consistent, we need to
assign values to the different parameters.

We will first proceed with what is called calibration: Assigning N
parameter values to match N moments in the data.

Calibrations is the simplest way but it has some drawbacks:

Using only some data moments wastes information.
There are no measures of statistical accuracy or goodness of fit.
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Alternatives to calibration

Full information approach:

Given some parameter vector p, the model generates time series for
macroeconomic aggregates.

Choose the vector p such that we maximize the likelihood that our
model generates the observed data series.

GMM:

Instead of the entire time-series, select some moments in the data.

Given some parameter vector p, the model generates the analogous
set of moments.

Choose the vector p such that we minimize the distance between the
moments observed in the data and in the model.
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Calibration strategy

Kydland and Prescott (1982) suggest to use the following strategy:

Use the parameters of the model to match long-run trends in the data.
This is simply the calibration of the Neo-Classical growth model.

The only parameters matching business cycle facts are those from the
technological progress. We use these to match exactly with our model
the process of TFP in the data.

Hence, we ask how much fluctuations in macroeconomic aggregates
can we explain by the amount of exogenous fluctuations in TFP from
the data.
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Calibration, long-run moments

The model period is one quarter.

A yearly real interest rate of 4%: β = 0.99.

Match a capital share of income of 0.33: α = 0.33.

A capital depreciation rate of 2.5%: δ = 0.025.

Micro-estimate for risk aversion: γ = 2.
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Calibration, business cycle moments

Matching moments:

Importantly, we need to treat the model as the data, that is, apply an
HP filter.

An autocorrelation in TFP of 0.76 requires ρ = 0.95.

A variance of TFP of 0.01262. We require σϵ = 0.0095.

Note, the autocorelation and standard deviation we use in the model are
not those implied by an AR(1) process: σϵ√

(1−ρ2)
= 0.03. The reason is

that we HP-filter the resulting process.
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Solving the model numerically

We are going to solve the model using Dynare which is an add-on program
library for Matlab.

Dynare computes for us the linearization around the steady state.

It solves the steady state numerically.

It simulates the economy, computes moments, and computes impulse
response functions.

It also allows for higher-order Taylor-series expansions where risk
starts to matter.
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The structure of Dynare

You write your program in a so-called .mod file. Simply write it in a
Matlab file and save it as a .mod file instead of a .m file.

The program consists of 6 parts (see next slides).

You call this file from Matlab using: dynare FILENAME noclearall
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Declarations

In this part, you declare the names of your endogenous (var) and
exogenous (varexo) variables, as well as, the parameters of the model.

Felix Wellschmied (UC3M) RBC 46 / 93



Set the parameter values

You may either set the parameter values directly in Dynare, or load them
from a Matlab file as I do here:
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Model equations

Now, you need to write the equilibrium equations of your model. Note,
here I write all variables in exp so that Dynare linearizes around logs of the
variables. That is, the level of consumption is actually exp(c):
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Model equations II

Dynare has as convention to time the variable on when it is decided. As
Kt+1 has been already decided in t, it is dated with t. In contrast, Ct+1 is
decided in t + 1 and, hence, is dated with +1:
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Steady state

Next, you need to compute the steady state. Dynare uses a non-linear
equation solver ( Newton ). Here, you need to provide some initial values:
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Exogenous shocks

Next, we need to specify the exogenous shocks which is just one in our
case:
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Solution

Finally, you need to tell Dynare to compute the solution to the model. I
tell Dynare here to apply a HP-filter and a first-order Taylor series
approximation:
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Understanding the Dynare output

First, Dynare provides you with the solution of steady-state variables (in
my code the log steady state):
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Understanding the Dynare output II

Next, Dynare gives us the policy functions. The constant is simply the
steady state:

For example, given my log definition of variables, the policy function for
consumption is written as

Ĉt = a1K̂t + a2Ât−1 + a3ϵt . (62)
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Understanding the Dynare output III

Next, we receive some summary statistics computed on the HP-filtered
data:
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Understanding the Dynare output IV

Then, Dynare provides the correlation among HP-filtered variables:
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Understanding the Dynare output V

Finally, we have the autocorrelation structure of HP-filtered variables:
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Comparing model and data

Data
Y C I TFP

Std. % 1.61 1.25 7.27 1.25
ACR(1) 0.78 0.68 0.78 0.76

Model
Std. % 1.24 0.47 3.8 1.24
ACR(1) 0.72 0.75 0.71 0.71
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Comparing model and data

Correlations

Y C I TFP

Data
Y 1
C 0.78 1
I 0.83 0.67 1
TFP 0.79 0.71 0.77 1

Model
Y 1
C 0.97 1
I 1 0.95 1
TFP 1 0.95 1 1
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Comparing model with data

The successes:

The model replicates broad co-movement of all macroeconomic
aggregates.

The autocorrelations of all aggregates are of the right size.

Investment is much more volatile than other aggregates.

Consumption is less volatile than output.

The correlation is weakest between consumption and other aggregates
suggesting consumption smoothing.

The misses:

The model has too little propagation: Output just as volatile as TFP.

The co-movements between the variables is too strong.
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Monte-Carlo simulation and impulse responses

Dynare computes so called impulse responses.

You may want to do this yourself.

Dynare can compute moments based on simulations of the model.

Again, you may want to simulate the economy yourself.

For this, we use the policy functions that Dynare has computed.
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State-space representation

Dynare saves the policy functions in their so called state-space form.

Let St be a vector of the states, i.e. K̂t and Ât .

Let Xt be a vector of the controls, i.e. Ĉt , Ŷt and Ît .

St = ASt−1 + Bϵt (63)

Xt = CSt−1 + Dϵt (64)
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Understanding Dynare

Dynare stores these matrices.

Matrices A and C are stored in oo .dr .ghx .

Matrices B and D are stored in oo .dr .ghu.

The order of the variables is not as we have defined variables. The
vector oo .dr .inv order var provides the mapping from our order of
variables to the order that Dynare has stored the variables.
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Retrieving the matrices
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Impulse response functions

Using the state-space representation also allows us to compute what
is called impulse responses.

This is the dynamic behavior of all variables that have been in steady
state and receive a one-time exogenous shock (1 std).

After this one shock, no further shocks occur and the economy will
eventually return to its steady state.

In period one, this is simply

S1 = Bϵ1 (65)

X1 = Dϵ1 (66)

Afterwards, we have with no further shocks:

St = ASt−1 (67)

Xt = CSt−1 (68)
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Impulse response functions
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Impulse response functions II

After an increase in productivity, investment increases.

This leads to a slow build-up in capital.

Higher TFP and capital increase output.

As MPK is high initially, consumption rises by less than investment.

Over time, as MPK declines, consumption increases.

As output returns to its initial level, consumption starts to decline
again at some point.

In total, consumption is relatively smooth.
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Simulating the economy

The idea is to draw a long series of random numbers for the
productivity shocks.
Given these shocks, we can compute the resulting macroeconomic
aggregates.
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Results of the simulation
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Back to the beginning

So far, we have solved the model using (log)-linearization.

We are now going to solve the model globally.

In particular, we are going to use value function iteration.

Importantly, now uncertainty is going to matter.
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The recursive formulation

You have already seen the recursive formulation:

V (K ,A) = max
C ,K ′

{C 1−γ
t

1− γ
+ EtV (K ′,A′)

}
(69)

s.t.

Ct + Kt+1 = Yt + (1− δ)Kt

Yt = AtK
α
t

It = Kt+1 − (1− δ)Kt

lnAt+1 = ρ lnAt + ϵt+1
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Solving the recursive formulation

We have to parametrize Et .

We assume productivity follows a continuous AR(1) process. To put
it in a computer, we need to discretize it.

The method most commonly used for this is the Tauchen algorithm.
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Value function iteration algorithm

Construct a grid for capital Ki = {k1, k2, ...kNk
}.

Construct a grid for productivity Aj = {A1,A2, ...ANs} and
corresponding transition matrix P.

1 Guess a continuous/increasing value function V 0(Ki ,Aj) of dimension
Nk X Na.

2 Solve V n(K ,A) = max
C ,K ′

{
u(c) + βP(A,A′)V n−1(K ′,A′)

}
.

3 Replace last iteration guess by new solution V n−1 = V n.

4 Iterate until |V n − V n−1| < crit.
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Appendix

Appendix
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Solving the system (general form)

Blanchard and Kahn (1980) suggest one possible solution technique that
first writes the problem in VAR form:

A1

[
EtXt+1

EtYt+1

]
= A0

[
Xt

Yt

]
+ aZt+1, (70)

where Xt are the state variables (K̂t , Ât), Yt are the forward-looking
controls (or jumpers, Ĉt), and Zt+1 are mean zero shocks. Note, for
simplicity, I omit output, Ŷt , and investment, Ît , which can be derived
from the other variables.
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Solving the system (our case)

(1− α) 1γ (1− β(1− δ)) − 1
γ (1− β(1− δ)) 1

1 0 0
0 1 0

 K̂t+1

EtÂt+1

Et Ĉt+1

 =

 0 0 1

αY ss

K ss + 1− δ Y ss

K ss −C ss

K ss

0 ρ 0

K̂t

Ât

Ĉt

+

00
1

 ϵt+1 (71)
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Back to the general case

Define A = A−1
1 A0 and R = A−1

1 a:[
EtXt+1

EtYt+1

]
= A

[
Xt

Yt

]
+ RZt+1, (72)

Blanchard and Kahn (1980) show that

a unique solution exists iff the number of eigenvalues of A lying
outside the unit circle (unstable roots) is equal to the number of
jumpers.

no solution exists if there are too many unstable eigenvalues.

infinitely many solutions exist if there are too few unstable
eigenvalues.

Back
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Root Finding

We are looking for x1, ..., xn such that

f(x) = 0 ⇔


0 = f 1(x1, ...., xn)

...

0 = f n(x1, ...., xn)

(73)

For simplicity, let us start with the univariate case:

f (x) = 0. (74)
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Newton-Raphson Method

Newton method uses first order approximation to the function.

First order approximation around guess x0:

f (x) ≈ f (x0) + f ′(x0)(x − x0).

Setting f (x) = 0 and solving for x gives new guess:

x ′ = x0 − f (x0)
f ′(x0)

.

The tangent intersects the x-axis.

This requires numerical differentiation (in one second)!
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Modified Newton-Raphson Method

When the objective function is close to flat around x0, the linear
approximation may lead to a poor prediction.

Function may not be defined at x ′.

Reformulating the problem is often possible.

The Modified Newton-Raphson Method updates slowly λ ∈ [0, 1]:

x ′ = x0 − λ f (x0)
f ′(x0)

.
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Multivariate case

The method can be extended straightforward to the multivariate case:

f(x) = 0 ⇔


0 = f 1(x1, ...., xn)

...

0 = f n(x1, ...., xn)

Define the Jacobian:

J(a) =


f 11 f 12 f 13 . . . f 1n
f 21 f 22 f 23 . . . f 2n
...

...
...

. . .
...

f n1 f n2 f n3 . . . f nn

 , f ij =
∂f i (x)

∂xj
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Multivariate case II

Approximate
f(x) ≈ f(x0) + J(x0)(x− x0),

with solution
x′ = x0 − λJ(x0)

−1f(x0).
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Numerical Differentiation

For this algorithm, we need to compute

f ′(x) = lim
h→0

f (x + h)− f (x)

h
.

Simplest method called one sided approximation:

f ′(x) ≈ f (x+h)−f (x)
h . Slope error proportional to h
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Numerical Differentiation II

f ′(x) = lim
h→0

f (x + h)− f (x)

h

Two sided approximation:

f ′(x) ≈ f (x+h)−f (x−h)
2h . Slope error proportional to h2.

Back
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Markov Chains

Idea: Use a first-order Markov chain to approximate the continuous
AR(1) process.

A Markov-chain is characterized by a discrete grid si , i = 1 : N and a
transition probability matrix P giving the probability to move from
point i to j , pij .

Hence, St = PSt−1 gives the probability distribution over states in
recursive form.
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Markov Approximation of AR(1)

Consider the generalized AR(1) process:

At = (1− ρ)µ+ ρAt−1 + ϵt ϵt ∼ N(0, σ2)

The process has a mean µ.

We impose normality for the shock distribution!

Ergodic distribution is N(µ, σ2
AR) with σ2

AR = σ2

1−ρ2
.
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Tauchen (1986) Algorithm

Idea: Partition ergodic distribution in N bins and choose points in
bins representing those bins.

Choose N bins such that each is equally likely.
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Graphical Representation
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Create Bins

Choose boundaries, bi , of bins, Si , according to:

P(b ∈ Si ) = Φ
(bi+1 − µ

σAR

)
− Φ

(bi − µ

σAR

)
=

1

N
.

Hence,

Φ
(bi+1 − µ

σAR

)
=

i

N
.

or

bi+1 = σARΦ
−1
( i

N

)
+ µ.
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Centers of Bins

Next is to choose a representative element, si , for each bin:

si = (s|s ∈ Si ).

One can show that with a normal distribution this is:

si = NσAR

[
ϕ
(bi − µ

σAR

)
− ϕ

(bi+1 − µ

σAR

)]
+ µ.
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Transition Probabilities

We need to know the transition matrix. E.g., what is the probability for
s ∈ Si to move to s ′ ∈ Sj?

We need

bj ≤ ρs + (1− ρ)µ+ ϵ

bj+1 ≥ ρs + (1− ρ)µ+ ϵ

Thus

ϵ ∈ [bj − ρs − (1− ρ)µ, bj+1 − ρs − (1− ρ)µ].
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Simplified Tauchen Algorithm

pi ,j = P(s ′ ∈ Sj |s ∈ Si ) =

Φ
(bj+1 − ρsi − (1− ρ)µ

σ

)
− Φ

(bj − ρsi − (1− ρ)µ

σ

)
.

There is a more accurate formulation where all points in Si are taken
into account, not only si .

This requires integrating over the relevant part of the distribution and
weighting by the probability of each occurrence.

Back
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